Lesson 22. Testing Subsets of Predictors - Part 1

1 Overview

- We want to test a subset of predictors simultaneously
- Consider the model:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k + \varepsilon \qquad \varepsilon \sim \text{iid } N(0, \sigma_{\varepsilon}^2)$$

To test	Hypotheses	Use
single β_i		
whole model		
subset		

2 The nested *F*-test

- Suppose
 - \circ we have a multiple linear regression model with *k* predictors, and
 - we want to test a subset of ℓ predictors
- Formal steps:
 - 1. State the hypotheses:

 $H_0: \beta_i = 0$ for all predictors in the subset $H_A: \beta_i \neq 0$ for at least one predictor in the subset

2. Calculate the test statistic:

- The **full model** is the model with all k predictors
- $\circ~$ The **reduced model** is the model without the ℓ predictors being tested
- The SSE terms can be found in the ANOVA tables (see Lesson 16)

- 3. Calculate the *p*-value:
 - If the conditions for multiple linear regression hold, then the the test statistic *F* follows $F(\ell, n - (k+1))$

 \Rightarrow *p*-value =

4. State your conclusion, based on the given significance level α :

If we reject H_0 (*p*-value $\leq \alpha$):

We see significant evidence that including subset of predictors improves the model.

If we fail to reject H_0 (*p*-value > α):

We do not see significant evidence that including subset of predictors improves the model.